+3 set 1

1. Vaska's complex is

A. six coordinate with Ir(III)	B. four coordinate with Ir(I)
C. four coordinate with Rh(I)	D. four coordinate with Rh(III)

2. In diborane the B-H-B angles are about

A. 100°	B. 90°
C. 93°	D. 83°

3. In a commercial preparation dry heating of Na₂CO₃ with urea gives

A. NaCN, CO ₂ and NH ₃	B. NaOCN, CO ₂ and NH ₃
C. NaCN, CH ₄ and NO ₂	D. NaOCN, CO and N ₂ H ₄

4. Arrange the following Lewis acids in the order of increasing softness

Cu⁺, Au⁺, Ag⁺ and K⁺

A. $Au^+ < K^+ < Ag^+ < Cu^+$	B. $K^+ < Ag^+ < Au^+ < Cu^+$
C. $K^+ < Ag^+ < Cu^+ < Au^+$	D. $K^+ < Cu^+ < Ag^+ < Au^+$

5. Electronic configuration of the central metal ion in the compound $[W(CO)_6]$ is

A. d^5 , t_{2g}^5 , S=1/2	B. d^6 , t_{2g}^6 , S=0
C. d^4 , t_{2g}^4 , S=1	D. d^6 , $t_{2g}^4 e_g^2$, S=2

6. A solution of (-)-2-chloro-2-phenylethane in toluene racemises slowly in the presence of small amount of $SbCl_5$, due to the formation of

A. Carbanion	B. Carbene
C. Free radical	D. Carbocation

7. Which of the following alcohol will react faster with Lucas reagent at room temperature is

A. Butan-1-ol	B. Butan-2-ol
C. 2-Methylpropan-1-ol	D. 2-Methylpropan-2-ol

8. Which of the following statement is true about this molecule?

9. Which of the following statement is true about maleic acid and fumaric acid?

A. Maleate mono anion is much more stabilized than fumarate mono anion.	 B. Fumarate mono anion is much more stabilized than maleate mono anion.
 Both the mono anions have same stability. 	D. None of the above is true

10. The following reaction follows a

A. $S_N 1$ pathway	B. S _N 2 pathway
C. Mixed S _N 1 and S _N 2 pathway	D. None

11. A vapor at 39 atm and 25 °C was allowed to expand adiabatically to a final pressure of 1.00 atm through a porous wall. Calculate the final temperature. The Joule–Thomson coefficient, μ , at 25°C is 0.32 K atm⁻¹; assume that it remains constant over this temperature range.

A. 13 °C	B. 18 °C
C. 28 °C	D. 30 °C

12. Which one of the following is an extensive quantity?

A. density	B. Heat capacity
C. pressure	D. specific heat capacity

13. In the gas-phase reaction $A + B \Rightarrow 2C + 3D$, it was found that when 15.0 mol A, 18.0 mol B, were mixed and allowed to come to equilibrium at 600 K, the resulting mixture contained 10 mol C at a total pressure of 1 bar. What is the value of K^0_p at 600 K

A. 0.023	B. 0.037
C. 1.500	D. 0.500

14. Given: $E^{\circ}(Ag^+/Ag) = 0.8 \text{ V}$ at 298 K and $E^{\circ}(Zn^{+2}/Zn) = -0.76 \text{ V}$ at 298 K. An AgNO₃ solution containing a silver electrode is connected by means of a salt bridge to a ZnCl₂ solution containing a zinc electrode. Find the correct answer for the constructed cell at 298 K.

A. Ag (anode), Zn (cathode), flow of	B. Zn (anode), Ag (cathode), flow
electrons Ag Zn	of electrons Ag Zn
C. Zn (anode), Ag (cathode), flow of	D. Ag (anode), Zn (cathode), flow
electrons Zn Ag	of electrons Zn Ag

15. Given the reactions (a) and (b) below, determine ΔH^{o}_{r} for reaction (c) at 298 K.

 $\begin{array}{ll} (a) \ H_2(g) + Br_2(l) & 2 \ HBr(g) & \Delta H^o{}_r = -\ 72.80 \ kJ \ mol^{-1} \ at \ 298 \ K \\ (b) \ 2 \ H_2(g) + O_2(g) & 2 \ H_2O(g) & \Delta H^o{}_r = -483.64 \ kJ \ mol^{-1} \ at \ 298 \ K \\ (c) \ 4 \ HBr(g) + O_2(g) & 2 \ Br_2(l) + 2 \ H_2O(g) & \end{array}$

A338 kJ mol ⁻¹	B. 338 kJ mol ⁻¹
C. 243 kJ mol ⁻¹	D243 kJ mol ⁻¹

Key:

Q. no.	Answer
1	В
2	D
3	В
4	D
5	В
6	D
7	D
8	В
9	А
10	В
11	А
12	В
13	А
14	С
15	А